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If the open-channel target states are known, the minimum principle formulation of scattering theory 
provides a systematic approach whereby, one can, to arbitrary precision, monotonically approach the re
actance matrix K. The scattering wave function and the Green's function for the open-channel approxima
tion, that in which the closed channels are not taken into account at all, must be solved numerically. An ex
plicit method for constructing the Green's function is given. The minimum principle approach is probably 
limited at present, in practice though not in principle, to the three-body problem with just a few open 
channels. A very useful simplification is possible at the threshold for a new channel; one need not there 
include the new channel in the equations that must be solved exactly. 

1. INTRODUCTION 

THE minimum principle formulation of scattering 
theory was originally restricted to the case for 

which the initial relative kinetic energy of the two 
systems, E', was zero.1 The formulation was a practical 
one and was applied to a number of scattering problems.2 

The initial extension3 to E ' > 0 was not quite in a practi
cal form, but recently an improved (and truly rigorous) 
formalism was derived4 for Ef>0 which can and has 
been applied to single-channel scattering by a compound 
system. The present paper will be primarily devoted to 
extending this newer minimum principle formulation to 
multichannel scattering. I t will be useful to begin with 
a brief outline of the results that were previously ob
tained. The notation to be used will be that of Ref. 4 
and of a paper on bounds on multichannel scattering 
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parameters.5 (As opposed to some of the earlier usage, 
we here distinguish between bounds and minimum 
principles ̂ minimum principles, which might alternat-
tively be called variational bounds, contain variational 
parameters, while bounds do not.) 

For simplicity, we consider the scattering of a particle 
by a compound system, rather than of one compound 
system by another, and we take the incident particle 
to be distinguishable from the target particles, to have 
no spin or orbital angular momentum and to have no 
charge; we further assume that no rearrangement proc
esses are possible, and that the ground state and all of 
the excited states of the target have zero angular mo
mentum. Under most circumstances these restrictions 
can be trivially relaxed. We also assume this time not 
for simplicity but because of a basic limitation of the 
minimum principle approach, that the incident energy 
is too small to produce breakup. 

Let the target have eigenfunctions \pTm(t) and associ
ated energy eigenvalues Eym, where m = 0 , 1, 2, •••, 
and assume that the total energy E lies between 
ET,N-I and ETN, SO that there are N open channels. I t 
will unfortunately be necessary to assume that t h e 
open-channel eigenfunctions and energy eigenvalues 
are known. This is only natural since the eigenfunctions 
and eigenvalues appear explicitly in the specification of 
the boundary conditions. We let the index i refer to 
open channels, and let ki and ^ represent the wave 
number and the reduced mass in channel i. We now 
introduce for the moment the trial function ^ which is 

s Y. Hahn, T. F. O'Malley, and L. Spruch, Phys, Rev, 134, 
B397 (1964). 
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regular at the origin and which has the asymptotic 
form in the ith (open) channel given by 

*t -> {m/kdl,^Ti(r)lai s i n ( ^ + 0 ) 

+bit cos(kiqi+6)2/qi, qt ->°° . (1.1) 

The exact wave function has precisely the same asymp
totic form., but with bu replaced by the exact (unknown) 
value b{. Introducing the vectors a, b, and b*, with 
components di, fa, and bu, respectively, the exact and 
trial reactance matrices K# and K$t are denned by 

b=K#a and b«=K^a , (1.2) 

respectively. With the error function or difference 
function 12 defined by 

G E E * , - - * , (1.3) 

which then has the asymptotic form 

12-> (fXi/ki)1/2\pTi(r)(bit-bi) cos(kiqi+6)/qi, 
<?<->«> (1.4) 

in channel i, one can prove the identity3 

-27r^ 2 a-K 0 a=-27r^ 2 a-K^a+ Urt(H-E)*tdT 

- ftt(H-E)ttdT, (1.5) 

where H and E are the total Hamiltonian and total 
energy of the system. One immediately obtains a varia
tional principle for a*K^a on dropping the (unknown) 
second-order error term, (12, [_H—Eyi), but whereas 12 
will hopefully be small, this will never be assumed in 
the course of the analysis, the objective of which is to 
obtain an explicit bound on the error term and hence on 
a«Kfla. 

The bound is simple to obtain if the incident kinetic 
energy E' is equal to zero. Approaching this limit, it 
follows from the assumptions that we have made con
cerning spins and angular momenta that we have no 
degeneracy and therefore that there is only one channel 
open, that labeled by i=0. As the wave number ko 
in this channel approaches zero, the asymptotic form of 
12 becomes 

12 —» bjLo/ko)1/2\l/To(r)(bot—bo)(cos6—k0qo sin0)/go. (1.6) 

"Appropriate normalization"1'2 requires the most rapid 
possible decay in go so that we want to eliminate the 
term in the numerator proportional to </o; this is most 
simply achieved here6 by the choice 0=0 . The reactance 

6 In the limiting process E' —> 0, it was previously found that 
appropriate normalization corresponded to d = iir, as opposed to 
the result 0 = 0 obtained here. The difference is due to the fact 
that the nonzero energy normalization used in some of our recent 
papers and in the present paper, while allowable, does not reduce 
in the limit of zero energy to the normalization used in our earlier 

matrices K 0 ( = K ) and K0*(=K*) reduce to tarn; and 
tsmrjt, respectively, for single-channel scattering. We 
now introduce the "threshold reactance matrices" K 
and Kt defined by 

K = £ 0 * : and Kt = koKt. (1.7) 

K and Kt are then 1X1 matrices for ko sufficiently 
small, and are given by 

K=-A and Kt=-At, (1.8) 

respectively, where A is the scattering length and A t is 
the trial scattering length. For ko sufficiently small, we 
now have 

bo=— koAa0, bot^—koAtdo, (1.9) 

and choosing 
ao=ko-m, (1.10) 

we have for &o=0, the asymptotic forms 

1 2 - W 2 \ M r ) ( ^ - ^ ) / < ? o , (1.11) 

*t->^T*{r){q*-At)/qo, (1.12) 

while Eq. (1.5) reduces to 

2Tch2A = 2*h*At+ J^t(H-ET0)^tdT 

- [tt(H-ETo)QdT. (1.13) 

If now the incident particle cannot form a composite 
bound state with the target, it follows that H—ETo 
is a non-negative operator with respect to any function 
12 which satisfies the boundary conditions of Eq. (1.11). 
We therefore obtain an upper bound on A by simply 
dropping the error term. Note that for the choice 9 = \K 
the asymptotic form of 12 would not decay with q0 and 
the knowledge of the nonexistence of a composite 
bound state would not suffice to determine the sign of 
the error term. 

If there are N composite bound states, one can still 
obtain a rigorous upper bound on — a»Ka if one can 
find N approximate bound-state functions which are 
good enough to give binding,1,2 by effectively subtract
ing out the contributions to the error term of these 
bound states. The above considerations are applicable 
not only to E' = 0 single-channel scattering but, where 
the process is possible, to E' = 0 multichannel scattering; 
reintroducing spins for the moment, these include, for 
example, nucleon-nucleon scattering with tensor forces 

papers. To have had the same normalization we should not have 
used 

di sin (kiQi+0)-\-h cos {hqi -f-0), 

as in the present paper, but 

Oi cos(kiQi+9) — h sin(kiqi+6) 
since it is the a* which are taken to be known and since in our 
earlier papers it was always the sine function which was multiplied 
by the unknown number. 
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and nucleon-deuteron scattering with spin-dependent 
forces. Similarly, if for the moment we introduce orbital 
angular momenta, with or without spins, and if the 
ground state of the target has a nonzero angular mo
mentum and is therefore degenerate, there will be a 
number of channels open even for E' = 0 for a fixed total 
angular momentum, corresponding to different angular 
momenta of the incident particle and of the target, and 
the above approach provides bounds on the threshold 
reactance matrix provided the forces are of sufficiently 
short range. 

The determination of a bound on the error term is a 
much more difficult matter for E'>0, for in addition to 
any discrete states which give a negative expectation 
value of H—E, there will now be a continuum of states, 
or a number of continua of states, which give a negative 
expectation value of H—E. More precisely, if as before 
we have 

ET,N-I<E<ETN (1.14) 

there will be associated with H—E a, total of N continua 
whose lower limits, ETi—E for i=0, 1, • • •, N—l, lie 
below zero. The problem was first attacked by truncat
ing the various potential and erecting potential bar
riers,3 thereby eliminating the continuous spectra, but 
other than for potential scattering the method is not 
ordinarily a practical one. I t was subsequently realized 
that the projection technique of the formal theory of 
reactions,7 introduced to avoid the truncations of the 
earlier formal reaction theory formulations, was pre
cisely what was needed for a practical minimum 
principle formulation for £ ' > 0 , and the formalism was 
presented for single-channel scattering.4 The essential 
feature was the replacement of the identity of Eq. (1.13) 
by an identity in which the role of the error term 
(ft, [H-Ejl) was played by 

(QQ, e [ a C - £ ] Q Q ) = (QQ, Q[H-E^) 
+potential term , (1.15) 

where Q is projection operator onto the excited states 
of the target. The potential term does not change the 
end points of the continuous spectrum, but the appear
ance of the <2's causes the continuous spectrum of 
Q[H—E~]Q to extend not from ETQ—E to oo but from 
ETi—E to oo, so that, since we have E<ETi by the 
assumption that we are dealing with single-channel 
scattering, there are no negative continuum contribu
tions from (<20, [H-E~]QQ) and the situation for E ' > 0 
is then of precisely the same form, though algebraically 
more complex, as that for £ '= ( ) . The formulation has 
been applied to the single-channel scattering of 
positrons by H atoms for angular momenta L = 0, 1, 
and 2, with extremely encouraging results,8 and is cur-

7 H. Feshback, Ann. Phys. (N. Y.) 5,357 (1958); 19,287 (1962); 
L. Fonda and R. G. Newton, ibid. 10, 490 (1960). 

8 Y. Hahn, T. F. O'Malley, and L. Spruch (to be published); 
C. Kleinman, Y. Hahn, and L. Spruch (to be published). 

rently being applied to the scattering of electrons by 
hydrogen atoms. 

Section 2 will represent a straightforward extension 
of the projection technique to multichannel scattering 
processes in which all of the allowed channels contain 
only two systems. The interesting special case of scat
tering at the threshold of a new channel will be studied 
in Sec. 3 ; it will be shown there that a very useful simpli
fication of the formalism is possible for this case. A 
concrete method for the construction of the Green's 
functions that appear in the formalism is presented in 
an Appendix. 

2. THE MINIMUM PRINCIPLE 

Let P be a projection operator which projects onto 
all open channels and possibly some closed ones, and let 
Q= 1 - P . We then write 

( # - £ ) * = 0 (2.1) 

as 

P(H-~E)P*=-PHQ* (2.2) 

Q(H-E)Q*=-QHP*, (2.3) 

the formal solutions of which are 

py=pyp+PGpPHQ*y (2.4) 

Q*=QGQQHP$r, (2.5) 

where 

P(H-E)P*P=Q. (2.6) 

Gp is defined by 

Gp=lP(E-H)Py-1 (2.7) 

and by boundary conditions which follow from taking 
the asymptotic form of Eq. (2.4) and inserting the 
asymptotic forms of P$ and of P^p\ GQ is defined by 

GO^ZQiE-BOQT1 (2-8) 

and by boundary conditions which follow from studying 
the asymptotic form of Eq. (2.5). We will not actually 
need G®. Substitution of Eqs. (2.5) and (2.4) into Eqs. 
(2.2) and (2.3), respectively, leads to 

P(H+HQG®QH-E)P*=0, (2.9) 

Q(H+HPGPPH-E)Q*= -QHP*P. (2.10) 

The boundary conditions on the various functions are 

P* -> (fn/ki)1/a4fTi(r)Lai s i n ( 6 ^ + 0 ) 
+biCOs(kiqi+6)yqi (2.11) 

in channel i, with similar forms for P^p but with bi 
replaced by bip, and 

<2*-+0 (2.12) 

faster than 1/qt asymptotically as 2;-><*>. Multiplying 
Eq. (2.2) by P ^ p , Eq. (2,6) by P ^ , subtracting, and 
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integrating, we find with the use of Green's theorem 
that 

-2<irW(a>be-a-bop)= (P*P,PHQV). (2.13) 

Taking the inner product of Eq. (2.10) with \F, we have 

where we have defined the operator 3C(E,0)=3C by 

W=Q[H+HPGPPH~]Q. (2.15) 

From the standing wave boundary conditions for P$f 
as given by Eq. (2.11) and the similar form for P^p, 
the Green's function Gp is clearly defined with the 
principal value boundary condition and thus real and 
symmetric. Consequently the resulting 3C is a real and 
symmetric operator. (An elaborate and explicit discus
sion for the case of single-channel scattering has been 
given in Ref. 4.) We can therefore write 

- 2TTW (a • be- a • V ) = 2 (P&p, HQ$?) 
+ (e*,[ae-E]e*), (2.16) 

where we have chosen that linear combination which is 
stationary with respect to variations of Q^t. Introducing 
the error function QO, defined by 

eo=e*r-e*> (2.17) 
where the trial function Q&t vanishes for any coordinate 
going to infinity, as does Q^ky there are then no linear 
terms in QQ, in Eq. (2.16), and we find 

-2wW(a-be-a-b8P)==2(P*p,HQ*t) 
+ (Q*t, [ 3 C - £ ] W - (QQ, [3e-£]QO). (2.18) 

Since the continuous spectrum of 3C runs up to infinity 
from a value greater than E, and since only diagonal 
elements of 3C—E appear, the last term in Eq. (2.18), 
the only term that cannot be calculated explicitly, can 
be bounded by the same technique that was used in 
our previous papers. If, in particular, 3C does not have 
any (discrete) eigenvalues below E, 3C—E is a non-
negative operator and we obtain a bound on a*be by 
simply dropping the term in 3C—E. More generally, if 
3C has 3lQ eigenvalues which lie below E, where dlQ 

then depends upon E and upon 6, we must find dlQ 

orthonormalized functions $nt
Q which satisfy 

&ntQ,W&tntQ)=Snt
Qtnm, 

8ntQ<E, l<n,m<m,Q. (2.19) 

We can then bound ((X2, [3C-£](X2), and we find 

-27r&2a- Kea<-2irh2a- Kd
pa+2(Q*t}HP*p) 

9i° \(Q$ntQ,LtW-E-]Q*t+QHP*p2)\2 

Equation (2.20) is almost identical to the correspond
ing equation for single-channel scattering, and the way 
in which it will be used will be very similar. Once again 
one will not normally know the value of 3lQ,9 and the 
procedure will be to choose Q&t to contain more and 
more terms, ignoring the sum term, until one believes 
that one has passed through the 91*3 decreases in the 
right-hand side of Eq. (2.20). From this point on one 
does have a rigorous bound on a* K^a, and the bound will 
then converge monotonically toward its final value. The 
"best"4 choice for the variational parameters that 
appear in the trial function is the choice which mini
mizes — a- K#a, though if we have not yet passed through 
all of the dlQ decreases, that is, if we are not yet on the 
correct "branch," there will be other choices of the 
parameters which will, accidentally so to speak, give 
estimates of the elements of K̂  which lie closer to the 
true values. 

The vector a has thus far been completely arbitrary. 
For the particular choice a=a(*}, where a(i) has the 
components 

0iW) = 8*y, (2.21) 

we immediately obtain a minimum principle for Ken 
from Eq. (2.20). We cannot however obtain a minimum 
principle for any individual off-diagonal element, though 
we can of course obtain a minimum principle for various 
linear combinations of elements. A minimum principle 
for a particularly interesting linear combination, related 
to the eigenphase shifts, can be obtained as follows. 

Let P^rP(a(*)) be the uniquely determined solution 
of Eq. (2.6), with appropriate boundary conditions, 
associated with a(i). It follows that 

i ^ p ( a ( i ) ) _ ^ . . . [ 5 . . s i n ( ^ . + ^ ) + . . . ] ) ^ ^ o o . (2.22) 

We now define the vector 

Px = E<a<*>P¥p(a<*>), (2.23) 

where the sum contains N terms, and choose 

P*p(a) = P2C-a, (2.24) 
where a is arbitrary. P^p(a) is then a solution of Eq. 
(2.6), while asymptotically it approaches 

i ^ p ( a ) - > . - - [ a y s i n ( ^ + ^ ) + - - - ] , #->«>. (2.25) 

9 We showed previously (Ref. 4) that for the incident kinetic 
energy sufficiently small 9lQ was the difference between the number 
of negative eigenvalues of H—ETO and of P(H—ETo)P, where P 
is the ground-state projection operator. This is a useful result since 
the first number can be determined experimentally and the second, 
which requires the analysis of only a one-body problem, theoretic
ally. It should not be difficult to obtain a similar result, expressing 
dlQ as the difference of two numbers, in the neighborhood of any 
threshold. The result might not be as useful, however, since it 
would no longer be possible to experimentally determine either 
of the two numbers. On the other hand, it is possible that the num
ber which is more or less impossible to determine by a direct theo
retical attack would effectively have been determined either theo
retically or experimentally by a study of the scattering process at 
energies below the given threshold energy. 
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P$fp(a) is then the solution of Eq. (2.6) appropriate 
to the (arbitrary) vector a. 

Correspondingly, let Q^ft
{i) be some choice related to 

a ( i ). Qfyt
{i) is not uniquely determined by the specifica

tion of a(i). In general, one would choose some Q&t^ 
containing variational parameters and then determine 
the parameters, not necessarily precisely, by trying to 
minimize the right hand side of Eq. (2.20), with a= a ( i ). 
We now define 

eC=£ia«G*« ( <> (2.26) 

and choose 

Q* .=0C-a , (2.27) 

where a is arbitrary. Equation (2.20) now becomes 

- a - K 0 a < - a - K ^ a , (2.28) 

where 

-2<irh2KBe^-2Trh2Kep 

+2(ec,Hi>x)+(ec,[3c-^]eo 
, *? I (G*»A LtK-EM+QHPx]) |2 / N 

+ E — , (2.29) 
»-i E-Snt

Q 

where, though we have not made it obvious notationally, 
each term in Eq. (2.29) is of course a matrix. We denote 
the N (calculable) ordered real eigenvalues of the sym
metric matrix KBO by tan(rjBs—S) and the corresponding 
real eigenvalues of the symmetric matrix K<? by 
tan(?7s—0). 

Since a is arbitrary, and since KBO is independent of 
a, Eq. (2.28) becomes 

— Kfl< — KB9, 

from which it follows that 

t a n ( 7 7 s - 0 ) > t a n ( ^ s - 0 ) , s=l, 2, >--,N. (2.30) 

We note in passing that a comparable result can be 
obtained given any N linearly independent vectors a 
and their associated ^ p ( a ) , the particular choice that 
was made being simply the most convenient. 

We close this section with a more general comment. 
I t should be clear that the basic result, Eq. (2.20), 
can serve as a powerful tool in the anaylsis of the effects 
of virtual excitation, with potentialities outside of the 
domain of an approach such as the close coupling ap
proximation.10 More precisely, the effects of virtual 
excitation, which include through the Gp term the con
tribution of P^—P^p, are taken into account through 
the introduction of Q&f Thus, as opposed to the close 
coupling approximation, virtual excitation is accounted 
for not by including the virtual states (and in particular 
only the discrete virtual states) one by one, but, for 
the introduction of each new term in Q&t, by including 
an arbitrary linear combination of discrete and contin

uum virtual states, with variational parameters which 
are to be adjusted to give the "best" possible results, 
where "best" has the precise meaning noted above. 
Thus, while the close coupling approximation is often 
beset by slow convergence difficulties for electron hydro
gen scattering in particular11 and probably rather gen
erally, no such difficulties should ordinarily attend a 
minimum principle calculation. 

3. SIMPLIFICATION AT AN EXCITATION 
THRESHOLD 

The minimum principle formulation just described 
requires the introduction of the projection operators 
P and Q, where P must include all open channels. This 
is also true, in particular, for single-channel scattering. 
At E' = 0, however, it is unnecessary and therefore un
desirable to introduce projection operators; as dis
cussed in the Introduction, the original formulation,1 

valid at E' = 0, provides a minimum principle which is 
much simpler to obtain. The relative merits at Ef = 0 
of the formulations with and without projection oper
ators, and the connection between them, is discussed in 
Ref. 4. 

The original (Ef = 0) formulation can be thought of as 
containing projection operators, but with P = 0 and 
<2=1, that is, with P not containing the ground-state 
channel. We will show in this section that an analogous 
simplification is possible at any excitation threshold, 
that is, at exactly that incident energy at which some 
new channel (or channels) opens up, namely, that it is 
then unnecessary (and generally undesirable) to include 
in the P the state which has just opened up. The re
duced dimensionality of P and hence of P^p and even 
more significantly of PGP effects a considerable 
simplification. 

Let the total energy E be exactly equal to ETN- There 
are then N+l open channels, the last of which is just 
open. In view of the simplifying assumptions noted in 
the Introduction, and in particular those related to spins 
and angular momenta, the new channel is nondegener-
ate. (There would be no difficulty in extending the 
formalism to include the degenerate case in which the 
target state associated with the new channels has non
zero angular momentum. The simplification achieved 
in this case would be even more significant.) The formal
ism developed in the previous section requires the in
clusion of the new channel in P . We will now modify 
the treatment so that it will be applicable even though 
the new channel is included in Q rather than in P. 

Since one will ultimately be interested in making the 
connection between the scattering at energies greater 
than ETN and the scattering at ETN, we consider an 
energy E just above ETN—in particular, not enough to 
open up the next channel—and go through a limiting 
process in which kN approaches zero. To obtain "ap-

10 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962). 11 P. G. Burke (to be published). 
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propriate normalization'' we set 0=0 . The only dis
tinction between the present situation and that con
sidered in the previous section is that Q&, because it 
now contains the new channel, here possesses non-
vanishing asymptotic components. More precisely, with 
kN not zero, Q% behave asymptotically as 

Q% —> GW*Ar)1/Y2w(r) (aN sinkNqN 

+bN coskNqN)/qN, qN ->co . (3.1) 

The asymptotic form of P$? in the i\h channel, where we 
here restrict i to values from 0 to N—l, is given by 

P& —> (iJLi/kiy/2\f/Ti(r)(aiSmkiqi 

+biCOskiqi)/qiy q{ (3.2) 

As kN approaches zero, the asymptotic form of P& 
changes only in the replacement of ki by kiN, the 
(nonzero) value of ki at E=ETN, but the asymptotic 
form of Q$r approaches 

QV - > (fJLN/kN)1/2^TN(r) (aNkNqN+bN)/qN. (3.3) 

The aj for 0<j<N are arbitrary, and to simplify the 
limiting process we introduce the vector a, with elements 
ai} defined by 

a=<o1/2a, (3.4) 

where 

SOiV ' 

kN-l,Nlh 

kN
l 

(3.5) 

Similarly, we introduce the vector b, with elements b3, 
defined by 

b = 6 ) - i /2b , (3.6) 

and the threshold reactance matrix K, defined by 

a.Ka=a-Ka. (3.7) 

I t then follows, since there should of course really be 
an adjoint on the left element of the dot product, that 

K=CD1 / 2£G>1 / 2 , or £=G>- 1 / 2K<O- •1/2 (3.8) 

and that 
b=Ka. 

If we now let k^ approach zero, we have asymptotically 

P$ - » y,ii^Ti(r)Lai($mkiNqi/kiN) 

QV-

+ bi CQskiNqi]/qi, £< -»°° , (3.9) 

* VNm^TN{r)(aNqN+bN)/qN, qN ->c© . (3.10) 

This completes the limiting process, and we are now 
in a position to proceed, with the appropriate modifica
tions, as in Sec. 2. We rewrite 

(H-ETN)* = 0 (3.11) 

as 

P(H-ETN)P*=-PHQV, (3.12) 

Q(H-ETN)Q*=-QHP*. (3.13) 

The formal solution of these equations is then given by 

P*=P*P+PGPPHQV, (3.14) 

Qy^QyQ+QGQQHP*, (3.15) 
where P^p is that regular solution of 

P(H-ETN)P*p=0, (3.16) 

which behaves asymptotically as does P&, in Eq. (3.9), 
but with bi replaced by bip, while Q&Q is that regular 
solution of 

Q(H-ETN)Q*<>=0, (3.17) 

which behaves asymptotically as does Qfr, in Eq. (3.10), 
but with bN replaced by bN

Q. Gp and GQ are defined in 
the usual way. I t is an essential feature of the present 
section that neither Q$Q nor GQ need actually be con
structed explicitly; they appear only in the formal 
manipulations. 

The substitution of Eqs. (3.15) and (3.14) into (3.12) 
and (3.13), respectively, gives 

P{H+HQGQQH-ETN)P*= -PHQ^Q, (3.18) 

Q(H+HPGPPH-ETN)Q*= -QHP*P. (3.19) 

If now we multiply Eq. (3.12) by PVP and Eq. (3.16) 
by P$r and subtract, integrate, and use Green's theorem, 
we find 

- 2 * * 8 I / , (ajbi-aib*)** (P*P,PHQV) 

= (QHP*P,Q*) = - {Q[W--ETN]Q*,Q*), (3.20) 

where in the sum i runs from 0 through iV— 1, we used 
the fact that PHQ vanishes asymptotically to enable 
us to move PHQ from the right to the left of the comma, 
and where in the last step we used Eq. (3.19) and 
introduced 

W==Q(H+HPGPPH)Q. (3.21) 

We rewrite Eq. (3.20) as 

-2Trfi2Z'i (aibi-aibi
p)^2(P^p

yPHQ^) 
+ (Q*,Q[K-ETN1Q*) (3.22) 

in order to make the right-hand side stationary with 
respect to variations in Q&, and introduce a trial func
tion Q&t which is regular at the origin and which 
behaves asymptotically as does Q&, in Eq. (3.10), but 
with b^ replaced by b^t- Defining the error function 
QQ, in the usual way as 

QV^Q*t-Q*, (3.23) 

the asymptotic behavior of QQ, is given by 

Qtt -» fxN^TN (r) (bNr- bN)/qN. (3.24) 
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Using the relationship 

(QQ, QlW-ETN~]Q*t)- {Q*h Q[K-ETN-]QV) 

= 2irW{aNtfN—ciN^Nt)^ (3.25) 

which follows from Green's theorem and Eqs. (3.10) 
and (3.24), Eq. (3.22) can be rewritten as 

-iTrWa-Ka^-lirWiYs'iCiibf+aNbm) 

+ 2(PZp,PHQ*t)+(Q*t, Q\jK-EN-]Q*t) 

-(QQ,Q£K-EN-]QV)y (3.26) 

where the threshold reactance matrix K is defined by 

a-Ka=Y,'i<iibi+aNbN=a-b. (3.27) 

The identity given in Eq. (3.26) is exactly of the 
form which makes it possible to provide a minimum 
principle for a*Ka and therefore for K. If, for example, 
there are no discrete eigenvalues of 3C below ETN—the 
continuous spectrum of this operator starts at ETN— 
the only unknown term in Eq. (3.26), the last (second-
order error) term, is greater than zero and we obtain a 
minimum principle for a*Ka by simply dropping the 
error term. Notice that the sign of the error term is 
known only because we used "appropriate normali
zation" so that Q£l had the asymptotic behavior given 
by Eq. (3.24). Had we used 9 = ^T rather than 0 = 0, the 
asymptotic forms of Qty and of Q$?t would be altered 
with the consequence that the asymptotic form of Qtt 
would be proportional to \I/TN(*) rather than I^TW (*")/<?• 
The information that 3C had no eigenvalues below ETN 
would not then be enough to determine the sign of the 
error term nor therefore to provide a minimum 
principle.12 

If 3C has a number of eigenvalues below ETN, we 
must go through the usual "subtraction" procedure. 

The threshold energy dependence of the usual reac
tance matrix K follows immediately from a knowledge 
of the threshold reactance matrix K, for Eq. (3.8) can 
be rewritten as 

K<, = (kiN
l/2kJN

1/2Kij)+ • • •, i^N, j^N, 

KiN= Km= (kiN
1/2KiN)kN1/2+ • • • , i*N, 

KiViV= C^2V2v)£iV+ 

APPENDIX A: A CONNECTION BETWEEN 
THE MINIMUM PRINCIPLE AND A 

VARIATIONAL PRINCIPLE 

I t is of interest to see the connection between Eq. 
(2.20) and the simple variational expression which 
follows from the identity, Eq. (1.5), 

- a - K a « - a . K , i a + 0 9 h , [ # - £ ] * * ) , (Al) 

12 The choice 0 = 0 is essential in order to obtain a minimum 
principle at threshold. However, it is more convenient to choose 
0 = J7r for the study of reactance matrix near a resonance. [See 
for example, G. L. Shaw and M. H. Ross, Phys. Rev. 126, 806 
(1962).] The difference of Jx in the choice of 0 is a reflection of the 
fact that the difference in the phase shifts at threshold and at 
resonance is J7r (mod ir). 

where ^ is a trial function which satisfies boundary 
conditions of the form given by Eq. (1.1). (We use the 
tilde here in order to distinguish between the trial 
function $rt to be inserted into the variational principle 
and the trial function ^ , or rather Q&t, to be inserted 
into the minimum principle.) Consider the particular 
choice 

*t=P*p+GpPHQyt+Q*t, (A2) 

which satisfies the required boundary conditions and is 
in fact suggested by the exact relationship 

y = P*+QV==P>irr+GpPHQ*+Qy. (A3) 

With the insertion of Eq. (A2) into Eq. (Al), we re
produce the first three terms of the right-hand side of 
Eq. (2.20). We can reproduce the fourth term of Eq. 
(2.20) by choosing13 

*l=P*p+GpPHQ9t+Q9t+ £ bnQ$nfi, (A4) 
n = l 

where the variational parameters bn do not appear in 
Q$rt nor in the $nt

Q, inserting this choice of $ft into 
Eq. (Al), and setting the variation with respect to the 
bn equal to zero. 

tyt as given by Eq. (A3) or (A4) represents an itera
tion on ^t- For the same trial function, Eq. (2.20) will 
therefore generally give a better result than will Eq. 
(Al), but of course Eq. (2.20) is much more difficult to 
apply. For the particular case of zero incident energy, 
where the potentials need not be truncated, it is 
preferable to use the result obtained previously,1 which 
is just Eq. (Al) with the subtraction terms. Examples 
of multichannel scattering processes which should be 
attacked by the older formulation are the zero-energy 
scattering of nucleons by deuterons or by protons. In 
the latter case the approach of Sec. 2 is not even appli
cable because we do not then have scattering by a 
compound system. 

APPENDIX B: CONSTRUCTION OF THE GREENE 
FUNCTION, PGp 

Let P be the projection operator onto the M-dimen-
sional space which includes all N open channels and 
M—N closed channels. We here assume that the various 
particles are distinguishable. We furthermore restrict 
ourselves to excitation, that is, we exclude rearrange
ment collisions. The problem is to construct PGP, 
denoted by PG in this Appendix, which is defined by 

P(H-E)PG=-P, (Bl) 

and by the appropriate boundary conditions. (Through
out the Appendix we will not actually specify the bound
ary conditions, which depend upon whether the various 
channels are open or closed, although they are necessary 
to uniquely define the different Green's functions.) 

13 The situation is very similar to that for £ ' = 0. See the third 
paper of Ref. 1. 
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We also introduce the projection operators Pi and P_»-
which project onto the ith target state and all but the 
^th target state, respectively, that is, 

PiPj=P&,; P = T,'Pi, P-i = P~Pi, (B2) 

where here and throughout Appendix B all indices take 
on M values. (To consider rearrangement collision, we 
would have to deal with elementary projection operators 
Pi which were not all orthogonal.) We further introduce 
the associated Green's functions Gi and G-i defined by 

and 

Pi{H-E)PlGi^-Pil 

P-i(H-E)P-&-i=-P-i, 

(B3) 

(B4) 

respectively. Gi is the Green's function for an ordinary 
differential equation and its numerical determination is 
therefore a simple matter, and will henceforth be as
sumed to be known. 

Gi, G-i and G are similar to one another in that they 
are the Green's functions for 1, I f — 1 , and M channels, 
respectively. Our expression for G will be recursive in 
nature, involving G_;, and certain readily constructed 
Green's functions, including Gi. Let us then assume that 
G-i is known. 

Since P=Pi-\-P-i, Eq. (Bl) can be rewritten as a 
set of coupled equations for PZG and P-tG 

Pi(H-E)PiG= -Pi-PiHP^G, (BSa) 

P-i(H-E)P-lG= -P_i-P-iHPiG. (B5b) 

The formal solution of these equations is given by 

PZG=P%Gi+P%GiPiEP-.%G, (B6a) 

P-%G=P-%G-i+P-&-iP-&P*G. (B6b) 

Substitution of Eqs. (B6a) and (B6b) into Eqs. (B5b) 
and (BSa) respectively, leads to uncoupled equations for 
P%G and P-%G 

PlH+HP^G-iP-iH- F^P%G 

^-Pi-PiHP^iG-i, (B7a) 

P_lH+HPiGiPiH--E~]P-.iG 

= -P-z-P-iHPlGi. (B7b) 

We now introduce two new Green's functions, gt- and 
g_*, defined by 

PlH+HP„iG-.iP„iH-E~]Pi<3i= -Pi (B8) 

and 

P-lH+HPlGiPiH-ElP-£-i= -P-i, (B9) 

respectively. Since G-i is known by assumption, Ptg,-
is the Green's function of an ordinary integrodifferential 
equation and can therefore be readily constructed 
numerically. g_; on the contrary is the solution of a set 
of M — 1 coupled equations whose construction it would 
be very desirable to avoid. We will show in fact that it 
is not necessary to determine the g_;. 

The solution of Eqs. (B7a) and (B7b) is then given 
by 

PiG = PiQi+PiQiPiHP-iG-i, (B 10a) 

P-%G = P-&.i+P-£-iP-iHPlGi. (BlOb) 

We can now write 

PG=P%G+P-tG, (Bl l ) 
but this is only a formal solution since Eq. (BlOb) 
for P-tG involves the g_* whose determination we would 
prefer to avoid. We can however write 

PG=Yf P^G=X' LPiQi+PiQiPiHP-iG-il, (B12) 

where the sum includes M terms. The determination of 
the M-channel Green's function, PG, has thus been 
reduced the determination of the M different M—\ 
channel Green's functions, P-tG-i, and of the M simple 
Green's functions P*g*. 

For the two-channel case we have, in particular, 
labeling the target states 1 and 2, 

2 (B13) 
PG=Z tPiQi+PiSiPiHPjGj-], 

where j—2iii=l and j=liii=2, where we have used 
the fact that for the two-channel case G-i=Gj and 
P-i—Pj, and where Gi and g; are defined by 

Pi(H-E)PlGi=-Pil (B14) 

Pi(H+HPJGjPjH-E)Pi<3i= -Pi. (B15) 

In the more transparent matrix form, we have 

PG=PGP 

Pig iP i Pi&PiHP2G2P2\ 

y (Bi6) 
- ( P2Q2P2HPIG1PI P2&P2 

The Pauli case, which requires some modifications, will 
be treated in the course of an actual application. 

APPENDIX C: A CONNECTION BETWEEN MINI
MUM PRINCIPLES AT AND ABOVE 

THRESHOLD ENERGIES 

As in Appendix A, a connection between the two 
forms of minimum principle for energies at and above 
the new excitation threshold can be easily shown by 
constructing a suitable trial function Q&t- For N+l 
open channels, we define the projection operators 

P = PQ+Pl+-->+P-N-l+PK = P-N+Pir9 (CI) 
and 

Q=1-P=Q-N~PN. (C2) 

The two minimum principles derived in Sees. 3 and 2 
can then be rewritten as 

- a • b < - a_w • h„N
p-»- aN • bm+ 2 (Q_N$t,HP-NVp-») 

+ (Q-N% [_H- ETN+HGp-mlQ-N^t), (C3) 
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and 

-a-b< -a-bp+2(Q*t,ffP¥p) 
+ (Q*h LH-ETir+HGpBlQ^t), (C4) 

where we have neglected the possible subtraction terms 
for simplicity. [Usually Eq. (C4) contains fewer sub
tractions than Eq. (C3). When there are infinite 
number of resonances below the Nth threshold, thus 
requiring an infinite number of subtractions in Eq. 
(C3), then Eq. (C3) would no longer be useful.] 

Now, from the exact form of the solution ^ given by 

^=P^P+GPHQ^+Q^ 

= P-N*P+PN*P+Q-NHQ*+QNHQ* 

+G-NHQNHQ*+GNHQ-.NHQ*+Q*, (C5) 

it is possible to construct a function Q-N^t of the form 

Q-NVt=PNVt+Q*t 
= PN^p+QNHQ^t+GNH^NHQ^t+Q^t. (C6) 

Substitution of Eq. (C6) into Eq. (C3) and simplifying 
the resulting expression, one obtains Eq. (C4). The 
calculation is tedious but perfectly straightforward, 
and the following relations prove useful: 

Gp= S-N+G-NHQN+GNH<3-N+QN, (C7) 

a . r L / ^ = a . r L / + (P-N*p-»,HPN*P), (C8) 
aN'bNt=aN'bN

p+ (PNVt,HP„N*p) 
+ (PN*p,£H-ETN^PN*t), (C9) 

QNHG-N=GNHQ-N, (CIO) 

G-N-^N= -G-NHGNHq-N. (Cll) 
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Measurements that are of limited accuracy, are incomplete, or require a finite time to make do not 
generally permit one to construct a wave function for describing a physical system. The use of such partial 
information to predict the results of subsequent measurements is studied here. There are several practical 
applications of this problem, including the use of the autocorrelation function for a particle counter in a 
scattering experiment. 

I. INTRODUCTION 

IT is customary in the pedagogical development of 
quantum mechanics and field theory to mention the 

limitations on correlated measurements of observables 
at different space-time points. Little attention has been 
given, however, to actual experiments for making such 
observations, or their usefulness. In this paper and in a 
subsequent one, we shall discuss both of these subjects 
from a general point of view and with particular appli
cations to scattering processes. 

This work is an outgrowth from a recent paper on the 
correlated counting rate of two detectors recording 
particles scattered from a target.1 There it was shown 
that by such an observation both the magnitude and 
phase of a scattering amplitude can be determined. Such 

* This work was supported in part by the U. S. Atomic Energy 
Commission and in part by a grant from the U. S. Air Force. 

1 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 
132, 2764 (1963). 

an observation of spatial correlations is only one of a 
much broader class of experiments to measure time and 
space-time correlations in a particle beam. For example, 
as we shall show in a subsequent paper, the time-
dependent autocorrelation function for a single counter 
can provide information on the coherence of, say, a 
laser beam.2 If a beam has been scattered, the auto
correlation function yields a measure of relaxation 
processes in the target. 

In this paper we make some general comments on the 
theory of measurement for quantum-mechanical sys
tems and illustrate the theory with some conceptually 
simple examples: (a) measurement of the spin of either 
one of two interacting particles at a time /2 following the 
measurement of the spin of one of them at an earlier 
time tit and (b) the theory of intensity correlations of 
the Hanbury Brown-Twiss variety. 

2 See, for example, C. H. Townes and R. Serber, Quantum 
Electronics (Columbia University Press, New York, 1960), p. 233. 


